The ¹H and ¹³C NMR of the Tetraphenylcyclopentadienone Dianion

NOTES

Masatoshi Hirayama,* Kazuhiko Koiwai, Kazumi Такемиra, Masaaki Kobayashi, Akihiko Seki, and Kensuke Таканаshi†

Department of Chemistry, Faculty of Science, Ibaraki University,
2-1-1 Bunkyo, Mito 310

†Department of Applied Chemistry, Nagoya Institute of Technology,
Gokiso-cho, Showa-ku, Nagoya 446

(Received December 1, 1987)

Synopsis. The stable monomer dianion of the title compound was formed by the contact of its tetrahydrofurand8 or 1,2-dimethoxyethane- d_{10} solution with sodium metal at 5 °C and was characterized by means of its ¹H and ¹³C NMR spectra.

It has been known that the alkali metal salts of aromatic ketyls (A^TM⁺) generated by alkali-metal reduction in an ethereal solvent tend to change competitively to a diamagnetic dimer dianion (A₂²-2M⁺) and a diamagnetic monomer dianion (A²-2M⁺) via a paramagnetic ketyl dimer (A^TM⁺)₂) and that the latter change is dominant in 2-methyltetrahydrofuran, generally causing a pronounced ion pairing with alkali metal. ^{1a)} Recently, the monomer dianion of fluorenone has been precisely investigated by means of NMR in our laboratory. ²⁾ We wish to report here on the monomer dianion of sterically hindered tetraphenylcyclopentadienone (1).

Experimental

Compound 1 (Aldrich Co., Ltd.) was used without further purification. Tetrahydrofuran(THF)-d₈ and 1,2-dimethoxyethane(DME)-d₁₀ (Canada MSD Co., Ltd.) used as the solvents were dried, degassed, and stored over sodium/potas- $0.2 \,\mathrm{mol}\,\mathrm{dm}^{-3}$ THF- d_8 and DME- d_{10} sium in vacuo. solutions of 1 were in contact with a clean sodium mirror in high vacuum at 5°C in a Pyrex cell fused with an NMR tube. The ¹H NMR spectra were measured on JEOL GX-400 (400 MHz) and Varian XL-200 (200 MHz), and the ¹³C NMR spectra on JEOL FX-90Q (22.5 MHz) and Varian VXR-300 (75 MHz) at room temperature. The ESR and ENDOR spectra were observed on JEOL JES-FE1XG and Varian E-1700, respectively in order to confirm the disappearance of the ketyl radical of 1. The MO calculation of the charge density was performed on HITAC M-240H at Ibaraki University, the program used for the CNDO calculation being Y4CB043 in the library programs of the University of Tokyo.

Results and Discussion

The contact of 1 with sodium in THF- d_8 or DME- d_{10} gave first a reddish-purple species revealing an ESR and an ENDOR spectra, which can be identified

with the radical anion of 1.4 Upon continued contact, it gradually turned orange, the ESR signal of 1⁷ disappeared, and a new NMR spectrum developed simultaneously. The ¹H and ¹³C NMR spectra of this new diamagnetic species 1a, as observed in THF-d₈ after complete reduction, are shown in Figs. 1 and 2 respectively, along with those of 1. The addition of a reducible aromatic compound, 2-nitroacetophenone, to la led to the ESR spectrum of the radical anion of this compound, while the quenching of la with oxygen gas regenerated 1. The ¹H spectrum of la consists of two sets of AA'BB'C patterns separated from each other; they can be clearly distinguished in terms of the H-H shift correlation 2D NMR, and its spectral center of gravity shifts toward a field higher by 0.29 ppm than that of 1 (Table 1). The observed number of lines in the ¹³C spectrum of la is equal to that in 1; furthermore, a line with a particularly weak intensity is included, as in 1. Its center of gravity was found to shift toward a field higher by 5.73 ppm than that of 1. The fact that both the ¹H and ¹³C NMR patterns of the orange species produced in THF are completely identical with those in THF-d₈ implies that la does not arise from a possible diamagnetic anion formed by the subtraction of a proton from the The 13C line with a particularly weak intensity appears at a field much lower than an aliphatic region, although it shifts toward a considerably higher field than that of 1. These experimental

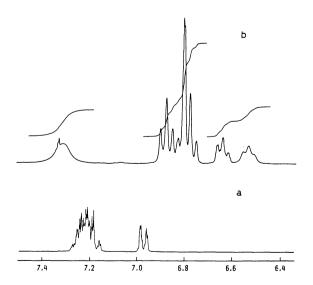


Fig. 1. 1 H NMR spectra of 1 (a) (400 MHz) and 12-(b) (200 MHz) in THF- d_8 .

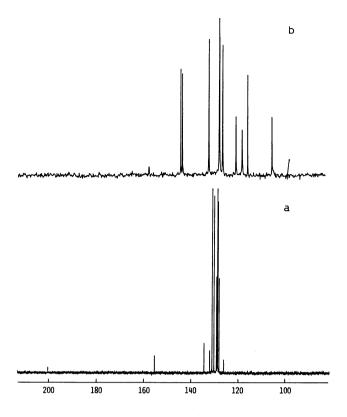


Fig. 2. 18 C NMR spectra of 1 (a) (75 MHz) and 12-(b) (22.5 MHz) in THF- d_8 .

results thus show that la can be attributed to a monomer dianion of 1, 1²⁻, or its disodium salt, 1²⁻2Na⁺, and that the formation of a possible pinacolate-type dimer dianion can, therefore, be ruled out.

The higher-field doublet in the ¹H NMR of 1 was assigned to H₁₉ using lanthanoid-induced shifts due to Eu(fod)₃. In the ¹H spectrum of 1²- it may be considered that an AA'BB'C group with a much lowerfield doublet corresponds to the C₆-C₁₁ ring, considering the anisotropic effect of the carbonyl group. The assignment of the ¹³C spectrum of 1 was that in the literature.⁵⁾ For 1²⁻, all the tertiary carbons were assigned using the C-H shift correlation 2D NMR combined with proton assignments. C₅ can be distinguished from the other quaternary carbons in terms of its long T_1 , as in 1. The MO calculations by the INDO method⁶⁾ reveal that most of the excess π charge densities of 1^{2-} from 1, Δq_c^{π} 's, occupy the cyclopentadienone moiety; the calculated ¹³C shifts of 1^{2-} from 1 ($\Delta\delta_c$), estimated using the standard value of k_c , 160 ppm/electron, in $\Delta \delta_c = k_c \cdot \Delta q_c^{\tau}$ are 19.5, 62.5, and 46.6 ppm for C₁, C₂, and C₅ respectively.⁷⁾ With the aid of these results, the lines appearing at δ 116.16 and 105.97 were assigned to C1 and C2 respectively,

Table 1. Chemical Shifts in ppm^{a)}

	$\delta_{ m N}$	$\delta_{ extsf{D}}$	$\Delta\delta^{ ext{a})}$
H7	7.21±0.05	7.31	-0.01±0.05
8	7.21 ± 0.05	6.88	0.33 ± 0.05
9	7.21 ± 0.05	6.58	0.63 ± 0.05
19	6.98	6.80	0.18
20	7.21 ± 0.05	6.78	0.43 ± 0.05
21	7.21 ± 0.05	6.64	0.57 ± 0.05
Cl	126.07	116.16	9.91
2	155.37	105.97	49.40
5	200.20	157.82	42.38
6	134.41	143.68°)	−9.27°)
7	131.03	128.13	2.90
8	128.59	128.02	0.57
9	129.19	118.54	10.65
18	132.01	144.38°)	-12.37°)
19	130.21	132.52	-2.31
20	128.83	126.67	2.16
21	128.06	121.09	6.97

a) Relative to TMS. Positive signs denote low-field shifts. $\delta_N: 1, \delta_D: 1^{2-}$. b) $\Delta \delta = -(\delta_D - \delta_N)$. c) Assigned tentatively.

while those at δ 144.59 and 143.59 were assigned to C_6 and C_{18} , but C_6 and C_{18} were indistinguishable from each other. Thus, the observed ¹³C shift pattern of 1²-is, on the whole, consistent with that expected from theoretical considerations.

References

- 1) a) N. Hirota and S. I. Weissman, J. Am. Chem. Soc., **86**, 2538 (1964); b) N. Hirota, *ibid.*, **89**, 32 (1967); c) K. S. Chen, S. W. Mao, K. Nakamura, and N. Hirota, *ibid.*, **93**, 6004 (1971); d) T. Takeshita and N. Hirota, *ibid.*, **93**, 6421 (1971).
- 2) M. Hirayama, H. Suzuki, and H. Ohhata, *Chem. Lett.*, **1987**, 413; M. Hirayama and H. Ohhata, *Bull. Chem. Soc. Jpn.*, **60**, 2751 (1987).
- 3) This program was prepared on the basis of J. A. Pople, D. C. Beveridge, and P. A. Dobosh, *J. Am. Chem. Soc.*, **90**, 4201 (1968).
 - 4) To be published.
- 5) L. Knothe and H. Prinzbach, Liebigs Ann. Chem., 1977, 687.
- 6) The averaged atomic coordinates from the crystallographic data (J. A. Potenza, R. J. Johnson, R. Chirico, and A. Efraty, *Inorg. Chem.*, **16**, 2354 (1977)) were used.
- 7) For the phenyl carbons, the pattern of the values of $\Delta\delta$ (calcd) does not correlate well with that of $\Delta\delta$ (obsd). Also, for the ring protons, the values of $\Delta\delta_{\rm H}$ calculated using $k_{\rm H}{=}10.7$ ppm/electron in $\Delta\delta_{\rm H}{=}k_{\rm H}{\cdot}\Delta q_{\rm c}^{\rm T}$ does not correspond well with those of $\Delta\delta_{\rm H}$ (obsd). These results may be accounted for by the fact that the polarization effect of the excess π -charge density at a carbon atom on the $^{\rm 1}{\rm H}$ or $^{\rm 13}{\rm C}$ shift does not become predominant over some other contributions to the $^{\rm 1}{\rm H}$ or $^{\rm 13}{\rm C}$ shift of the dianion from its neutral precursor, for the excess π -charges in the phenyl rings decrease considerably because of the very weak π -conjugation between the cyclopentadienyl and phenyl rings.